Avicenna Journal of Neuro Psycho Physiology

Published by: Kowsar

Neurophysiology of Social Conduct and Impact of Adverse Exposures

Abhay Kumar Pandey 1 , * and Bajarangprasad L. Pandey 2
Authors Information
1 Department of Physiology, Government Medical College, Banda, Uttar Pradesh, India
2 Department of Pharmacology, Institute of Medical Sciences. Banaras Hindu University. Varanasi. Uttar Pradesh, India
Article information
  • Avicenna Journal of Neuro Psycho Physiology: February 2017, 4 (1); e12452
  • Published Online: November 30, 2016
  • Article Type: Review Article
  • Received: September 1, 2016
  • Accepted: October 24, 2016
  • DOI: 10.5812/ajnpp.12452

To Cite: Kumar Pandey A, L. Pandey B. Neurophysiology of Social Conduct and Impact of Adverse Exposures, Avicenna J Neuro Psycho Physiology. 2017 ;4(1):e12452. doi: 10.5812/ajnpp.12452.

Abstract
Copyright: Copyright © 2017, Avicenna Journal of Neuro Psycho Physiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Introduction
2. Neuron Network Pathophysiology
3. Social Cognition
4. Organic Brain Disease and Social Cognition
5. Psychiatric Diseases and Social Cognition
6. Environmental Challenge to Social Cognition
7. Environmental Impacts on Social Brain Structures
8. Compensation and Recovery: The Network View of the Social Brain
9. Clinical Perspectives
10. Research Perspectives
References
  • 1. Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci. 2001;24:1071-89. doi: 10.1146/annurev.neuro.24.1.1071. [PubMed: 11520928].
  • 2. Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist. 2006;12(6):512-23. doi: 10.1177/1073858406293182. [PubMed: 17079517].
  • 3. Stam CJ, van Straaten EC. The organization of physiological brain networks. Clin Neurophysiol. 2012;123(6):1067-87. doi: 10.1016/j.clinph.2012.01.011. [PubMed: 22356937].
  • 4. Srinivasan R, Thorpe S, Nunez PL. Top-down influences on local networks: basic theory with experimental implications. Front Comput Neurosci. 2013;7:29. doi: 10.3389/fncom.2013.00029. [PubMed: 23616762].
  • 5. Bettencourt LM, Stephens GJ, Ham MI, Gross GW. Functional structure of cortical neuronal networks grown in vitro. Phys Rev E Stat Nonlin Soft Matter Phys. 2007;75(2 Pt 1):21915. doi: 10.1103/PhysRevE.75.021915. [PubMed: 17358375].
  • 6. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7). e159. doi: 10.1371/journal.pbio.0060159. [PubMed: 18597554].
  • 7. Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y, Melie-Garcia L. Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage. 2008;40(3):1064-76. doi: 10.1016/j.neuroimage.2007.10.060. [PubMed: 18272400].
  • 8. Boersma M, Smit DJ, de Bie HM, Van Baal GC, Boomsma DI, de Geus EJ, et al. Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Mapp. 2011;32(3):413-25. doi: 10.1002/hbm.21030. [PubMed: 20589941].
  • 9. Micheloyannis S, Vourkas M, Tsirka V, Karakonstantaki E, Kanatsouli K, Stam CJ. The influence of ageing on complex brain networks: a graph theoretical analysis. Hum Brain Mapp. 2009;30(1):200-8. doi: 10.1002/hbm.20492. [PubMed: 17990300].
  • 10. Knyazev GG, Volf NV, Belousova LV. Age-related differences in electroencephalogram connectivity and network topology. Neurobiol Aging. 2015;36(5):1849-59. doi: 10.1016/j.neurobiolaging.2015.02.007. [PubMed: 25766772].
  • 11. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci. 2008;28(37):9239-48. doi: 10.1523/JNEUROSCI.1929-08.2008. [PubMed: 18784304].
  • 12. Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore E. Fractal connectivity of long-memory networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77(3 Pt 2):36104. doi: 10.1103/PhysRevE.77.036104. [PubMed: 18517458].
  • 13. De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Tocci A, et al. Cortical network dynamics during foot movements. Neuroinformatics. 2008;6(1):23-34. doi: 10.1007/s12021-007-9006-6. [PubMed: 18266112].
  • 14. Farmer S. Comment on "Broadband Criticality of Human Brain Network Synchronization" by Kitzbichler MG, Smith ML, Christensen SR, Bullmore E (2009) PLoS Comput Biol 5: e1000314. PLoS Comput Biol. 2015;11(5). e1004174. doi: 10.1371/journal.pcbi.1004174. [PubMed: 25950844].
  • 15. Allman JM, Watson KK, Tetreault NA, Hakeem AY. Intuition and autism: a possible role for Von Economo neurons. Trends Cogn Sci. 2005;9(8):367-73. doi: 10.1016/j.tics.2005.06.008. [PubMed: 16002323].
  • 16. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):279-96. doi: 10.1016/j.neubiorev.2008.09.002. [PubMed: 18824195].
  • 17. Gonatas NK, Moss A. Pathologic axons and synapses in human neuropsychiatric disorders. Hum Pathol. 1975;6(5):571-82. [PubMed: 170188].
  • 18. Pandey AK, Deshpande SB. Bisphenol A depresses compound action potential of frog sciatic nerve in vitro involving Ca(2+)-dependent mechanisms. Neurosci Lett. 2012;517(2):128-32. doi: 10.1016/j.neulet.2012.04.044. [PubMed: 22561550].
  • 19. Pandey AK, Deshpande SB. Bisphenol A depresses monosynaptic and polysynaptic reflexes in neonatal rat spinal cord in vitro involving estrogen receptor-dependent NO-mediated mechanisms. Neuroscience. 2015;289:349-57. doi: 10.1016/j.neuroscience.2015.01.010. [PubMed: 25595991].
  • 20. Pandey AK. Non-classical estrogen/xenoestrogen receptor signaling in modulation of neuronal function. Eur J Biomed Pharm Sci. 2016;3:150-5.
  • 21. Pandey AK. Non-classical bioactivity of environmental estrogen Bisphenol-A with a focus on neurophysiology. Eur J Biomed Pharm Sci. 2016;3:156-67.
  • 22. Pandey AK. Environmental cognitive neurotoxicology: a perspective. Asian J Med Pharm Res. 2016;6:1-10.
  • 23. Pandey AK. Disruption of neurosynaptic physiology and neuron network dysfunction in brain disorders. J Alzheimers Neurodegenerat Dis. 2017;3:9.
  • 24. Becker LE. Synaptic dysgenesis. Can J Neurol Sci. 1991;18(2):170-80. [PubMed: 1829978].
  • 25. Oberman LM, Ramachandran VS. The simulating social mind: the role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychol Bull. 2007;133(2):310-27. doi: 10.1037/0033-2909.133.2.310. [PubMed: 17338602].
  • 26. Rizzolatti G, Ferrari PF, Rozzi S, Fogassi L. The inferior parietal lobule: where action becomes perception. Novartis Found Symp. 2006;270:129-40. discussion 140-5, 164-9. [PubMed: 16649712].
  • 27. Pellicano E. Links between theory of mind and executive function in young children with autism: clues to developmental primacy. Dev Psychol. 2007;43(4):974-90. doi: 10.1037/0012-1649.43.4.974. [PubMed: 17605529].
  • 28. Eisenberger NI, Cole SW. Social neuroscience and health: neurophysiological mechanisms linking social ties with physical health. Nat Neurosci. 2012;15(5):669-74. doi: 10.1038/nn.3086. [PubMed: 22504347].
  • 29. Lederbogen F, Kirsch P, Haddad L, Streit F, Tost H, Schuch P, et al. City living and urban upbringing affect neural social stress processing in humans. Nature. 2011;474(7352):498-501. doi: 10.1038/nature10190. [PubMed: 21697947].
  • 30. Meyer-Lindenberg A, Tost H. Neural mechanisms of social risk for psychiatric disorders. Nat Neurosci. 2012;15(5):663-8. doi: 10.1038/nn.3083. [PubMed: 22504349].
  • 31. Anderson SW, Bechara A, Damasio H, Tranel D, Damasio AR. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat Neurosci. 1999;2(11):1032-7. doi: 10.1038/14833. [PubMed: 10526345].
  • 32. Anderson SW, Damasio H, Tranel D, Damasio AR. Long-term sequelae of prefrontal cortex damage acquired in early childhood. Dev Neuropsychol. 2000;18(3):281-96. doi: 10.1207/S1532694202Anderson. [PubMed: 11385828].
  • 33. Shaw P, Lawrence EJ, Radbourne C, Bramham J, Polkey CE, David AS. The impact of early and late damage to the human amygdala on 'theory of mind' reasoning. Brain. 2004;127(Pt 7):1535-48. doi: 10.1093/brain/awh168. [PubMed: 15155523].
  • 34. Chib VS, Rangel A, Shimojo S, O'Doherty JP. Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J Neurosci. 2009;29(39):12315-20. doi: 10.1523/JNEUROSCI.2575-09.2009. [PubMed: 19793990].
  • 35. Krajbich I, Adolphs R, Tranel D, Denburg NL, Camerer CF. Economic games quantify diminished sense of guilt in patients with damage to the prefrontal cortex. J Neurosci. 2009;29(7):2188-92. doi: 10.1523/JNEUROSCI.5086-08.2009. [PubMed: 19228971].
  • 36. Shamay-Tsoory SG, Tomer R, Berger BD, Aharon-Peretz J. Characterization of empathy deficits following prefrontal brain damage: the role of the right ventromedial prefrontal cortex. J Cogn Neurosci. 2003;15(3):324-37. doi: 10.1162/089892903321593063. [PubMed: 12729486].
  • 37. Koenigs M, Young L, Adolphs R, Tranel D, Cushman F, Hauser M, et al. Damage to the prefrontal cortex increases utilitarian moral judgements. Nature. 2007;446(7138):908-11. doi: 10.1038/nature05631. [PubMed: 17377536].
  • 38. Philippi CL, Mehta S, Grabowski T, Adolphs R, Rudrauf D. Damage to association fiber tracts impairs recognition of the facial expression of emotion. J Neurosci. 2009;29(48):15089-99. doi: 10.1523/JNEUROSCI.0796-09.2009. [PubMed: 19955360].
  • 39. Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci. 2007;8(4):287-99. doi: 10.1038/nrn2107. [PubMed: 17375041].
  • 40. Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O. Modeling the impact of lesions in the human brain. PLoS Comput Biol. 2009;5(6). e1000408. doi: 10.1371/journal.pcbi.1000408. [PubMed: 19521503].
  • 41. Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007;17(1):103-11. doi: 10.1016/j.conb.2007.01.009. [PubMed: 17275283].
  • 42. Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL, et al. Decreased interhemispheric functional connectivity in autism. Cereb Cortex. 2011;21(5):1134-46. doi: 10.1093/cercor/bhq190. [PubMed: 20943668].
  • 43. Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin A. Fractionation of social brain circuits in autism spectrum disorders. Brain. 2012;135(Pt 9):2711-25. doi: 10.1093/brain/aws160. [PubMed: 22791801].
  • 44. von dem Hagen EA, Stoyanova RS, Baron-Cohen S, Calder AJ. Reduced functional connectivity within and between 'social' resting state networks in autism spectrum conditions. Soc Cogn Affect Neurosci. 2013;8(6):694-701. doi: 10.1093/scan/nss053. [PubMed: 22563003].
  • 45. Porter MA, Coltheart M, Langdon R. The neuropsychological basis of hypersociability in Williams and Down syndrome. Neuropsychologia. 2007;45(12):2839-49. doi: 10.1016/j.neuropsychologia.2007.05.006. [PubMed: 17597166].
  • 46. Bellugi U, Adolphs R, Cassady C, Chiles M. Towards the neural basis for hypersociability in a genetic syndrome. Neuroreport. 1999;10(8):1653-7. [PubMed: 10501552].
  • 47. Riby DM, Hancock PJ. Viewing it differently: social scene perception in Williams syndrome and autism. Neuropsychologia. 2008;46(11):2855-60. doi: 10.1016/j.neuropsychologia.2008.05.003. [PubMed: 18561959].
  • 48. Pineda JA, Hecht E. Mirroring and mu rhythm involvement in social cognition: are there dissociable subcomponents of theory of mind?. Biol Psychol. 2009;80(3):306-14. doi: 10.1016/j.biopsycho.2008.11.003. [PubMed: 19063933].
  • 49. Herbert MR. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol. 2010;23(2):103-10. doi: 10.1097/WCO.0b013e328336a01f. [PubMed: 20087183].
  • 50. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes?. J Alzheimers Dis. 2005;7(1):63-80. [PubMed: 15750215].
  • 51. Pandit A, Pandey AK. Atherosclerosis:current perspectives. Apollo Med. 2016;13:10-6.
  • 52. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122(4):1316-38. doi: 10.1172/JCI59903. [PubMed: 22476197].
  • 53. Bezzi P, Domercq M, Vesce S, Volterra A. Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. Prog Brain Res. 2001;132:255-65. doi: 10.1016/S0079-6123(01)32081-2. [PubMed: 11544994].
  • 54. Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, Besedovsky HO. A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci U S A. 1998;95(13):7778-83. [PubMed: 9636227].
  • 55. Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G, et al. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus. 2003;13(7):826-34. doi: 10.1002/hipo.10135. [PubMed: 14620878].
  • 56. Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7(2):269-78. [PubMed: 9142760].
  • 57. Kern JK. Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev. 2003;25(6):377-82. [PubMed: 12907269].
  • 58. Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H. Abnormal activation of the social brain during face perception in autism. Hum Brain Mapp. 2007;28(5):441-9. doi: 10.1002/hbm.20283. [PubMed: 17133386].
  • 59. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483-506. doi: 10.1016/j.tics.2011.08.003. [PubMed: 21908230].
  • 60. Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci. 2012;16(1):17-26. doi: 10.1016/j.tics.2011.11.007. [PubMed: 22169776].
  • 61. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125-65. doi: 10.1152/jn.00338.2011. [PubMed: 21653723].
  • 62. Simmons WK, Martin A. Spontaneous resting-state BOLD fluctuations reveal persistent domain-specific neural networks. Soc Cogn Affect Neurosci. 2012;7(4):467-75. doi: 10.1093/scan/nsr018. [PubMed: 21586527].
  • 63. Mars RB, Neubert FX, Noonan MP, Sallet J, Toni I, Rushworth MF. On the relationship between the "default mode network" and the "social brain". Front Hum Neurosci. 2012;6:189. doi: 10.3389/fnhum.2012.00189. [PubMed: 22737119].
  • 64. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1-38. doi: 10.1196/annals.1440.011. [PubMed: 18400922].
  • 65. Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, et al. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res. 2006;87(1-3):60-6. doi: 10.1016/j.schres.2006.06.028. [PubMed: 16875801].
  • 66. Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AW, Williams LM, et al. Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp. 2009;30(2):403-16. doi: 10.1002/hbm.20517. [PubMed: 18072237].
  • 67. de Haan W, Pijnenburg YA, Strijers RL, van der Made Y, van der Flier WM, Scheltens P, et al. Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neurosci. 2009;10:101. doi: 10.1186/1471-2202-10-101. [PubMed: 19698093].
  • 68. Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M. A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia. 2011;49(2):254-63. doi: 10.1016/j.neuropsychologia.2010.11.024. [PubMed: 21110988].
  • 69. Sendina-Nadal I, Buldu JM, Leyva I, Bajo R, Almendral JA, del-Pozo F. Integration versus segregation in functional brain networks. IEEE Trans Biomed Eng. 2011;58(10):3004-7. doi: 10.1109/TBME.2011.2161084. [PubMed: 21724498].
  • 70. Pijnenburg YA, v d Made Y, van Cappellen van Walsum AM, Knol DL, Scheltens P, Stam CJ. EEG synchronization likelihood in mild cognitive impairment and Alzheimer's disease during a working memory task. Clin Neurophysiol. 2004;115(6):1332-9. doi: 10.1016/j.clinph.2003.12.029. [PubMed: 15134700].
  • 71. Glascher J, Tranel D, Paul LK, Rudrauf D, Rorden C, Hornaday A, et al. Lesion mapping of cognitive abilities linked to intelligence. Neuron. 2009;61(5):681-91. doi: 10.1016/j.neuron.2009.01.026. [PubMed: 19285465].
  • 72. Glascher J, Rudrauf D, Colom R, Paul LK, Tranel D, Damasio H, et al. Distributed neural system for general intelligence revealed by lesion mapping. Proc Natl Acad Sci U S A. 2010;107(10):4705-9. doi: 10.1073/pnas.0910397107. [PubMed: 20176936].
  • 73. Woolgar A, Parr A, Cusack R, Thompson R, Nimmo-Smith I, Torralva T, et al. Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex. Proc Natl Acad Sci U S A. 2010;107(33):14899-902. doi: 10.1073/pnas.1007928107. [PubMed: 20679241].
  • 74. Calderon-Garciduenas L, Engle R, Mora-Tiscareno A, Styner M, Gomez-Garza G, Zhu H, et al. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn. 2011;77(3):345-55. doi: 10.1016/j.bandc.2011.09.006. [PubMed: 22032805].
  • 75. Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L. Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex. 2004;14(4):364-75. [PubMed: 15028641].
  • 76. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60:173-96. doi: 10.1146/annurev.psych.59.103006.093656. [PubMed: 19035823].
  • 77. Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science. 1994;264(5162):1102-5. [PubMed: 8178168].
  • 78. Adolphs R, Tranel D, Damasio H, Damasio A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature. 1994;372(6507):669-72. doi: 10.1038/372669a0. [PubMed: 7990957].
  • 79. Yagmurlu B, Berument SK, Celimli S. The role of institution and home contexts in theory of mind development. J Appl Dev Psychol. 2005;26(5):521-37. doi: 10.1016/j.appdev.2005.06.004.
  • 80. Bellugi U, Lichtenberger L, Mills D, Galaburda A, Korenberg JR. Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci. 1999;22(5):197-207. [PubMed: 10322491].
  • 81. Waller A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philosophical Transactions of the Royal Society of London; 1850.
  • 82. Moffitt TE, Caspi A, Rutter M. Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry. 2005;62(5):473-81. doi: 10.1001/archpsyc.62.5.473. [PubMed: 15867100].
  • 83. Campbell A, Araujo JA, Li H, Sioutas C, Kleinman M. Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice. J Nanosci Nanotechnol. 2009;9(8):5099-104. [PubMed: 19928188].
  • 84. Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardson BC. Epigenetics, disease, and therapeutic interventions. Ageing Res Rev. 2006;5(4):449-67. doi: 10.1016/j.arr.2006.07.001. [PubMed: 16965942].
  • 85. Pandey AK, Pandey G. Epigenetics and systems physiology of nutrition:an overview. Adv Diabetes Metab. 2017;5.
  • 86. Gong L, Pan YX, Chen H. Gestational low protein diet in the rat mediates Igf2 gene expression in male offspring via altered hepatic DNA methylation. Epigenetics. 2010;5(7):619-26. [PubMed: 20671425].
  • 87. Hariri AR, Drabant EM, Weinberger DR. Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol Psychiatry. 2006;59(10):888-97. doi: 10.1016/j.biopsych.2005.11.005. [PubMed: 16442081].
  • 88. Spencer PS, Palmer VS. Interrelationships of undernutrition and neurotoxicity: food for thought and research attention. Neurotoxicology. 2012;33(3):605-16. doi: 10.1016/j.neuro.2012.02.015. [PubMed: 22394483].
  • 89. Pandey G, Pandey AK. Nutrition research perspectives in immune mediated inflammatory disorders. Indian J Rheumatol. 2013;8:30-6.
  • 90. Pandey AK, Pandey G, Pandey SS, Pandey BL. Human Biology of Diet and Lifestyle Linked Chronic Inflammatory Non-Communicable Disease Epidemic – A Review. Human Biol Rev. 2014;3(1):25-42.
  • 91. Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249-61. doi: 10.1385/MB:26:3:249. [PubMed: 15004294].
  • 92. Quaak I, Brouns MR, Van de Bor M. The dynamics of autism spectrum disorders: how neurotoxic compounds and neurotransmitters interact. Int J Environ Res Public Health. 2013;10(8):3384-408. doi: 10.3390/ijerph10083384. [PubMed: 23924882].
  • 93. Cory-Slechta DA. Studying toxicants as single chemicals: does this strategy adequately identify neurotoxic risk?. Neurotoxicology. 2005;26(4):491-510. doi: 10.1016/j.neuro.2004.12.007. [PubMed: 16112317].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader